
Modeling a Cache Coherence Protocol

with the Guarded Action Language

Quentin Meunier, Yann Thierry-Mieg, Emmanuelle Encrenaz

Laboratoire d’Informatique de Paris 6, Sorbonne Université, Paris.

The TeraScale Architecture TSAR

 Hardware architecture designed to scale to up to 1024

core

 Hardware enabled cache coherence, logically a single

address space, NUCA characteristics

Architecture

 Asynchronous process communicating over unidirectional

shared channels

 Separate channels for direct and coherence transactions

Accessing memory

Channel Source Dest. Messages Adr. Id

PL1DTREQ Proc L1 DT_RD

DT_WR
1 /

L1PDTACK L1 Proc ACK_DT_RD

ACK_DT_WR
1 /

L1MCDTREQ L1 L2 RD

WR
1 1

MCL1DTACK L2 L1 ACK_RD

ACK_WR
1 1

L1MCCUREQ L1 MC CLNUP 1 1

MCL1CUACK MC L1 ACK_CLNUP 1 1

MCL1CPREQ MC L1 M_UP

B_INV

M_INV

1 1

L1MCCPACK L1 MC ACK_M_UP

ACK_B_INV

ACK_M_INV

1 1

MCMEMDTREQ MC MEM PUT

GET
1 /

MEMMCDTACK MEM MC ACK_PUT

ACK_GET
1 /

 Five independent networks in V5, six in V4

Distributed Hybrid Cache Coherence

Protocol DHCCP

 L2 cache maintains a directory of L1 copies of the data

 Directory is physically distributed

 Inclusive : any data in a L1 is necessarily in L2

 Write through : L2 version is always the latest

 Direct transactions

 Read, Write, Load-Linked/Store Conditional LL/SC, Compare and Swap

CAS

 Coherence transactions

 Update or evince L2 => update/invalidate all copies, wait for ACK

 Multicast update if few copies

 Broadcast an invalidate request if above the DHCCP threshold

 Count the responses in both cases

 Hybrid Multicast/Broadcast policy based on DHCCP threshold

Design issues

 Separate

Networks,

Asynchronous

behaviors…

 Errors are easy

to make, hard to

detect by

simulation and

testing

 This V4 example

deadlocks…

Applying model-checking

 Could formal verification help gain more confidence in the

design ?

 Challenges :

 Abstract from the real system faithfully

 Wide configuration space :

 Number of cores/threads, Number of addresses, DHCCP threshold

 Several versions of the protocol (V4 and V5)

 Smallest complete behavior : 3 cores, 2 addresses, threshold=2

 Observe both broadcast and multicast

 Goal is automatic verification => model-checking

 Counter-example traces help debug

Verifying the protocol

 Extract manually from the code + specifications

 Communicating automata over channels

 Components : Processor, L1 cache, L2 cache, Memory

Building a model with Promela/SPIN

 Two Master 1 students : M. Najem 2011, A. Mansour 2012

 Build the Promela model

 Formalisms of Communicating process matches the need

:: L1MCCUREQ ? m.type, eval(line_addr), m.cache_id ->

 do // Delete the cache id that did the request from the list of copies

 :: (cpt == CACHE_TH) -> break ;

 :: ((cpt < CACHE_TH) && (v_c_id[cpt] == VALID) && (c_id[cpt] ==

m.cache_id)) ->

 v_c_id[cpt] = INVALID;

 n_copies = n_copies - 1;

 break;

 :: else -> cpt = cpt + 1;

 od;

Results with SPIN

 Initial models are too detailed

 Observation automata are encoded into the model to check it’s
properties

 Cumbersome/intrusive observation mechanism for channels

 Incremental modeling of each component + verification in isolation is
possible

 Parametric features are good

 Simulator and traces as sequence diagrams are very useful

 Two versions of the protocol modeled

 More aggressive data abstraction in the second version

 Some extensions explored e.g. LL/SC

 Full verification only possible for very small configurations

 Unable to obtain full formal verification

 POR reductions limited by heavy channel usage

Modeling and Verification in DiViNe

 Master 2 student: Z. Gharbi

 DiViNe is both a language and a model checker

 Several versions, now focused on code verification

 BEEM benchmark (2007) -> LTSmin, ITS-tools, Divine…

 Similar in concept, but much more basic than Promela

 Parametric constructions with m4 preprocessor

 Channel support proved inadequate : use global variables

 Properties encoded as LTL with fairness

 Only Divine itself supports the keyword !

 Able to reproduce the deadlock + patch

 Still unable to model-check truly relevant configurations

 Integration of other tools a bit limited

Modeling in Guarded Action Language

 Master 2 student : D. Zhao

 GAL is an intermediate pivot

language for concurrent semantics

 Integers, and fixed size arrays of integers

 Parametric and compositional features

 Initially supported by a powerful SDD

engine (lots of MCC medals)

 Additional support now for LTSMin+POR

 Some SMT based verification

LTSmin SMT

A simple GAL

gal simple {
 int a = 5 ;
 int b = - 2 ;
 array [3] tab = (0, 8, - 6);

 transition t1 [a < tab [2]] {
 a = (b + 3) * 255;
 b = a * tab [1];
 self."act";

 self."act";
 }
 transition t2 [true] label "act" {
 tab [0] = (tab [0] - 1) | ((tab [0] == 255) * 255);
 }

 transition t3 [true] label "act" {
 }
}
property goal [reachable] : tab[0] == 8;

13

Indexes, bitwise operators…

Sequential
semantics

Nondetermism,
synchronization

Embedded properties

Composite and Parametric features

 Instantiation of components

 Parameters over finite range

 For loop

 Parametric transitions and labels

Modeling with GAL

 Explicit models of channels

 Two variants depending on data

 Automata directly expressed with a « state » variable

 Labels used to describe channel operations

 Description is hierarchical and parametric

 Composite description makes use of arrays of cores+L1; arrays

of L2 …

 Fine control over atomicity semantics

 Fusion of REQ/ACK in some scenarios

 No simulator

 « Unit » verification used to debug model behavior

« Unit verifying »

Verification with ITS-Tools

 Performance sensitive to the description

 Decomposition/recomposition heuristics still WIP

 With appropriate descriptions and hierarchy, full

verification is possible

 First full result on the minimal target configuration 3/2/2

 Scale up is still limited, largest configurations 3/3/3, 4/2/2,

6/1/2… even with 24h and sizeable RAM

 No deadlocks reported in any configuration

 Full LTL with fairness results still incomplete

 Data abstraction prevents verification of memory model

consistency in this version

Conclusion

 Formal modeling/verification is still a costly proposition

 Manual abstraction is not very trustworthy, but…

 Modeling all the implementation details swamps the model

 Protocol issues are not necessarily in the routing/transport
details

 Different solution engines/tools have different strengths
and weaknesses

 Lack of a more uniform description language, well supported
by several tools (e.g. SMT equivalent)

 Model-checking was part of the result

 A lot of confidence and understanding was also gained purely
by building the formal descriptions themselves and debugging
them

