Q SCIENCES
b SORBONNE

UNIVERSITE

L&

Modeling a Cache Coherence Protocol
with the Guarded Action Language

Quentin Meunier, Yann Thierry-Mieg, Emmanuelle Encrenaz

Laboratoire d’Informatique de Paris 6, Sorbonne Université, Paris.

The TeraScale Architecture TSAR

» Hardware architecture designed to scale to up to 1024

core

» Hardware enabled cache coherence, logically a single
address space, NUCA characteristics

/|

Global

| L[)

N/

[MemCache} [Router} { DMA} XICU
(L2) ‘ \
7 7N a 0

Local Interconnect)
/\V /\ /\ /\\/
I$ D (Iss D$W (I$ D$\ (I$ D$)

|

~

Architecture

» Asynchronous process communicating over unidirectional
shared channels

» Separate channels for direct and coherence transactions

Memcache
LIMCDTREQ
b
MCLIDTACK MCMEMDTREQ
- -
PLIDTREQ | Cache L10 LIMCCUREQ
=T = 3
Processor 0 MCLICUACK Memcache @0 MEMMCDTACK
(e
L1PDTACK MCLI1CPREQ
< Mémoire
LIMCCPACK
...... [
- —
— Memcache @1
E—
-

PL1DTREQ -
Processor 1 Cache L11
(J
L1PDTACK

Accessing memory

» Five independent networks in V5, six in V4

Processor DT RD

L1 Cache 1

RSP DT RD

- -

RD

L2 Cache (@0)

RSP RD

— GET

Memory

RSP GET

mmmml

PLIDTREQ

LIPDTACK

LIMCDTREQ

MCLIDTACK

Proc

LI

LI

L2

Proc

L2

LI

DT_RD
DT_WR

ACK_DT RD
ACK_DT_WR

RD
WR

ACK_RD
ACK_WR

Distributed Hybrid Cache Coherence
Protocol DHCCP

» L2 cache maintains a directory of L| copies of the data
Directory is physically distributed
Inclusive : any data in a LI is necessarily in L2

Write through : L2 version is always the latest

» Direct transactions

Read,Write, Load-Linked/Store Conditional LL/SC, Compare and Swap
CAS

» Coherence transactions
Update or evince L2 => update/invalidate all copies, wait for ACK
Multicast update if few copies
Broadcast an invalidate request if above the DHCCP threshold
Count the responses in both cases

» Hybrid Multicast/Broadcast policy based on DHCCP threshold

Design issues

L1 Cache © L1 Cache 1 L2 Cache (@0)
» Separate B IV | oot a
Networks, ‘
Asynchronous © copte - 1
behaviors...
» Errors are easy s S
to make, hard to N COPIES - 2
detect by " —=
simulation and E\:
testing RSP RD ———— N_COPIES = 3
» ThisV4 example [— =
deadlocks... :,(____B_.‘_I_”_V____-.__q__----------—————------E;-i,;;':-::::ZZZ
_nsp_a__mv - ‘j: _‘J__‘j_‘,:::-ﬂ--—’——’l'_-_::_____ _____ oL copres - 2
RSP B T -] N COPIES = 1

Applying model-checking

» Could formal verification help gain more confidence in the
design !
» Challenges :
Abstract from the real system faithfully

Wide configuration space :

Number of cores/threads, Number of addresses, DHCCP threshold
Several versions of the protocol (V4 andV5)

Smallest complete behavior : 3 cores, 2 addresses, threshold=2
Observe both broadcast and multicast

» Goal is automatic verification => model-checking

Counter-example traces help debug

Verifying the protocol

» Extract manually from the code + specifications
Communicating automata over channels

Components : Processor, L| cache, L2 cache, Memory

TIB_INW || M_IN) BNy

M UP . TREF_RD .
=RSP_M_LP MIS5_M_UP MISS_CLNUP

TUEL_INY || M_INY] BN || M_INY) G TE_INY

i _UP = IRSP_M_LIP LELICPREG, ADDR 1= ADDR SAVE ICLF

m RSP RD
FE_INY | M_INV) B
- . L2 1CPREG ADDA == ADOR_SAVE

—> MIEE_TCI_FI.ETFI.T]

EMPTY M55

r
T FD TB_INY

-= RO
D oL .
MISS_RETRY_RD MISS_RETRY
TCLACE u
TOT_WA,

- R TM_LP
dats Rairy ~=IRSF_M_LIP TR_INY

F IREP DT WR TE_INY .

[wn ITE_W.ﬂIT_EMF'TTj RSP_RD MISS WAIT
= IRSP_OT_RO -
} FE_INY

YOT_AD && PLIDTREG.ADDH = W_ADDRE
[E TN || IR -2 |CLMLIP
M_UWP = IRSP M _UP

TCLACK

FCLALCK gFuTE WAIT CLACICEI]
7B Iy - -

| p——

TOM_IN || B S
LFFLICPRED.ADDA 1= ADDR

Building a model with Promela /SPIN

» Two Master | students : M. Najem 201 |, A. Mansour 2012
» Build the Promela model

Formalisms of Communicating process matches the need

:: LIMCCUREQ ? m.type, eval(line addr), m.cache id ->
do // Delete the cache id that did the request from the list of copies
(cpt == CACHE TH) -> break ;

((cpt < CACHE TH) && (v_c id[cpt] == VALID) && (c id[cpt] ==
m.cache id)) ->

v_c_id[cpt] = INVALID;
n _copies = n copies - 1;
break;

:: else -> cpt = cpt + 1;

od;

Results with SPIN

» Initial models are too detailed

Observation automata are encoded into the model to check it’s
properties

Cumbersomel/intrusive observation mechanism for channels

Incremental modeling of each component + verification in isolation is
possible

Parametric features are good
Simulator and traces as sequence diagrams are very useful

» Two versions of the protocol modeled
More aggressive data abstraction in the second version
Some extensions explored e.g. LL/SC
» Full verification only possible for very small configurations
Unable to obtain full formal verification
POR reductions limited by heavy channel usage

Modeling and Verification in DiViNe

» Master 2 student: Z. Gharbi
» DiViNe is both a language and a model checker

Several versions, now focused on code verification
BEEM benchmark (2007) -> LTSmin, ITS-tools, Divine...

» Similar in concept, but much more basic than Promela
Parametric constructions with m4 preprocessor
Channel support proved inadequate : use global variables

» Properties encoded as LTL with fairness
Only Divine itself supports the keyword !

» Able to reproduce the deadlock + patch

Still unable to model-check truly relevant configurations

Integration of other tools a bit limited

Modeling in Guarded Action Language

» Master 2 student : D. Zhao

» GAL is an intermediate pivot
language for concurrent semantics
Integers, and fixed size arrays of integers

Parametric and compositional features
» Initially supported by a powerful SDD
engine (lots of MCC medals)

Additional support now for LTSMin+POR
Some SMT based verification

Third Party

tool |

Third party formalism
or DSL

transforml

Guarded Action Language

L]

simplity

ITS Tools
LTSmin SMT

gal simple {
int a =

transition t1 [a < tab [2]] {

Sequential
semantics

A simple GAL

ab = (@) 8) - 6);

a = (b + 3) * 255;

b=a* tab [1];

}

}

transition t2 [true] label "act" {

}

transition t3 [true] label "act" {

}

self."act"; <;--*””’//////”
self."act";

Nondetermism,
synchronization

J

tab [0] = (tab [0] - 1) | ((tab [

== 255) * 255);

Indexes, bitwise operators...

property goal [reachable] : tab[@] == 8;

Embedded properties

13

Composite and Parametric features

» Instantiation of components

» Parameters over finite range
For loop

Parametric transitions and labels

gal simple {
int a = 0;
transition tl [a < 5] label "label tl1" {
a=a + 1;

}

} Composite compo

composite compo { . .
simple spll; simple spl1 simple spl2
simple spl2;

synchronization s1 label “label s1" {
spll."label t1";
spl2."label t1";

}

Modeling with GAL

» Explicit models of channels

Two variants depending on data

» Automata directly expressed with a « state » variable

Labels used to describe channel operations

» Description is hierarchical and parametric

Composite description makes use of arrays of cores+L1; arrays
of L2 ...

» Fine control over atomicity semantics
Fusion of REQ/ACK in some scenarios

» No simulator

« Unit » verification used to debug model behavior

« Unit verifying »

L1 0 111 L1_2 L2 Mem
RD Empty
h &’
Read_Wait
ACK_GET o
S “__
ACK_RD
Valid_Multicast
-«
e —— RD
Valid_Multicast_Read
/ valid_Multicast

—RD\’

y

Valid_Broadcast_Init

WR Valid_Broadcast
—»
Valid_Broadcasgt_Inv
B_INV B
Broadcast_Inv_Wait

Verification with ITS-Tools

» Performance sensitive to the description
Decomposition/recomposition heuristics still WIP
» With appropriate descriptions and hierarchy, full
verification is possible
First full result on the minimal target configuration 3/2/2

Scale up is still limited, largest configurations 3/3/3, 4/2/2,
6/1/2... even with 24h and sizeable RAM

No deadlocks reported in any configuration
» Full LTL with fairness results still incomplete

» Data abstraction prevents verification of memory model
consistency in this version

Conclusion

» Formal modeling/verification is still a costly proposition
Manual abstraction is not very trustworthy, but...
Modeling all the implementation details swamps the model

Protocol issues are not necessarily in the routing/transport
details

» Different solution engines/tools have different strengths
and weaknesses

Lack of a more uniform description language, well supported
by several tools (e.g. SMT equivalent)

» Model-checking was part of the result

A lot of confidence and understanding was also gained purely
by building the formal descriptions themselves and debugging
them

